Electronic cigarette menthol flavoring is associated with increased inhaled micro and sub-micron particles and worse lung function in combustion cigarette smokers


doi: 10.1186/s12931-023-02410-9.

Affiliations

Item in Clipboard

Divay Chandra et al.


Respir Res.


.

Abstract

Flavored electronic cigarettes (ECs) present a serious health challenge globally. Currently, it is unknown whether the addition of highly popular menthol flavoring to e-liquid is associated with changes in the number of aerosolized particles generated or altered lung function. Here, we first performed preclinical studies using our novel robotic platform Human Vaping Mimetic Real-Time Particle Analyzer (HUMITIPAA). HUMITIPAA generates fresh aerosols for any desired EC in a very controlled and user-definable manner and utilizes an optical sensing system to quantitate and analyze sub-micron and microparticles from every puff over the course of vaping session in real-time while emulating clinically relevant breathing mechanics and vaping topography. We discovered that addition of menthol flavoring to freshly prepared e-liquid base propylene glycol-vegetable glycerin leads to enhanced particle counts in all tested size fractions, similar to the effect of adding vitamin E acetate to e-liquid we previously reported. Similarly, we found that menthol vs. non-menthol (tobacco) flavored pods from commercially available ECs leads to generation of significantly higher quantities of 1-10 µm particles upon inhalation. We then retrospectively analyzed data from the COPDGene study and identified an association between the use of menthol flavored ECs and reduced FEV1% predicted and FEV1/FVC independent of age, gender, race, pack-years of smoking, and use of nicotine or cannabis-containing vaping products. Our results reveal an association between enhanced inhaled particle due to menthol addition to ECs and worse lung function indices. Detailed causal relation remains to be demonstrated in future large-scale prospective clinical studies. Importantly, here we demonstrate utility of the HUMITIPAA as a predictive enabling technology to identify inhalation toxicological potential of emerging ECs as the chemical formulation of e-liquid gets modified.


Keywords:

Electronic cigarette; HUMITIPAA; Lung function; Menthol; Pulmonary toxicity; Robotic human vaping mimetic real-time particle analyzer.

References

    1. Johnson NL, Patten T, Ma M, De Biasi M, Wesson DW. Chemosensory contributions of E-cigarette additives on nicotine use. Front Neurosci. 2022;16: 893587.



      DOI



      PubMed



      PMC

    1. Ramamurthi D, Chau C, Berke HY, Tolba AM, Yuan L, Kanchan V, Santos G, Jackler RK. Flavour spectrum of the Puff family of disposable e-cigarettes. Tob Control. 2023;32:e71–7.



      DOI



      PubMed

    1. Monitoring U.S. E-Cigarette Sales: National Trends https://www.cdcfoundation.org/National-E-CigaretteSales-DataBrief-2022-D… .

    1. Peasley-Miklus C, Klemperer EM, Hughes JR, Villanti AC, Krishnan-Sarin S, DeSarno MJ, Mosca LA, Su A, Cassidy RN, Feinstein MJP. The interactive effects of JUUL flavor and nicotine concentration on addiction potential. Exp Clin Psychopharmacol. 2023;31:336–42.



      DOI



      PubMed

    1. Obisesan OH, Uddin SMI, Boakye E, Osei AD, Mirbolouk M, Orimoloye OA, Dzaye O, El Shahawy O, Stokes A, DeFilippis AP, et al. Pod-based e-cigarette use among US college-aged adults: a survey on the perception of health effects, sociodemographic correlates, and interplay with other tobacco products. Tob Induc Dis. 2023;21:34.



      DOI



      PubMed



      PMC

MeSH terms

Read more here: Source link

Leave a Reply

Your email address will not be published. Required fields are marked *